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SECTION I

INTRODUCTION

Efficient and reliable crack growth rate prediction methods are
important to the design of fracture critical aerospace structures. There
are many crack growth rate equations which are available for predicting
crack growth rates and lives based on constant amplitude stress histories
(References 1-3). Over the past few years, these equations have been
modified to account for variable amplitude loading by considering the
effective stress intensity factor and effective stress ratio of the
next cycle. The crack growth increments are generated cycle-by-cycle,
Methods in common use account for the delay in crack growth associated
with the application of a higher 1oad added to the load history
(References 4, 5). The crack growth increments are then calculated on
a flight-by-flight basis. Barsom (Reference 6), Elber (Reference 7),
and Gallagher (Reference 8) have investigated the use of constant-
amplitude-equivalent models to make predictions for random loading more
efficient. This approach is plausible because it was found that many
common variable amplitude load histories generate constant-amplitude-type,
crack growth rate behavior. Applied overloads are analyzed for this
class of flight-by-flight histories by separating the history into two
distinct blocks, the overload affected block and the constant-amplitude-
equivalent block.

In this report, results of an experimental program to investigate
the feasibility of such a block approach in a crack growth rate prediction
scheme for flight-by-flight histories are presented. Baseline crack
growth rate data were established under constant stress intensity factor
(Kmax) conditions. Overloads of 130 percent of the maximum repeating
value in the stress history were added at various intervals to evaluate
the nature of the delay caused by the overload by investigating the
statistical nature of the slower crack growth and the recovered crack

growth rate.
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The objective of this study was to investigate the nature of the
flight-by-flight fatigue crack growth (FCG) delay and its dependency on
the prevalence of the overload. This study is relevant to the improvement
of flight-by-flight FCG 1ife predictions.
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SECTION II
BACKGROUND

Early techniques for predicting crack growth under cyclic loading made
use of direct integration of constant amplitude fatigue crack growth
rate data on a discrete cycle-by-cycle 1oad basis. The crack incrementation
intervals were selected by the analyst or computed automatically using
one of the available computer programs such as the one described in
Reference 9. This incrementation scheme follows from the integration
of the crack growth rate derived from constant amplitude data:

o"”°+§:A°l (1)
. J=l

where N is the number of cycles corresponding to some intermediate crack
Tength a- The a, is the crack length at the beginning of the increment
and Aa is the crack growth during the interval. The next cycle produces
crack growth which can be expressed in terms cof the stress intensity
factor (AK) and the stress ratio (R); such that:

=99 LA (2)

R )
?
N+ ANy AN+ NH

This approach is acceptable for many applications but is highly con-
servative for some variable amplitude load histories. This is because
load-interaction effects due to overloads and underloads are not accounted
for. Overloads occurring in a varfable amplitude history have the effect
of retarding the succeeding Aa over a given crack length., Therefore,
other techniques have since been developed which do account for such
crack growth rate behavior. A commonly used retardation model is the
Willenborg model (Reference 5).

The Willenborg model (Reference 5) accounts for retardatfon by
postulating a reduction in the applied stress due to residual stresses
set up by the preceding overload. In conjunction with constant amplitude




AFWAL-TR-83-3069

crack growth-rate data, the effective stress-intensity factor AKeff is used
to generate the Aa for the next cycle:
oft off
Bay g, 1A WR ) )
N+I N+l N+I
where REFF is the effective stress ratio, based on Kmineff and Kmaxeff

for the next cycle. The effective stress intensity factor takes into
account the high-to-low load interaction effects. The residual stress

is assumed to decay over a crack length equal to Irwin's plastic zone, ry,
created by the overload;

K 2
where: r = é; oL s
y Oys

KOL = the stress intensity factor of the overload,
Oys = the yield stress of the material,

a = 2 for plane stress,

o = 6 for plane strain.

This model, although satisfactory for random loading, is not satisfactory
for flight-by-flight loading because such spectra maximize the influence

of high loads, which makes the prediction highly conservative for low to

high sequences.

Gallagher (Reference 8) and others have investigated a block approach
for predicting flight-by-flight crack growth rates. It has been shown
that for several variable amplitude loading cases, crack growth behavior
is similar to constant amplitude loading crack growth behavior. Examples
are transport/bomber design spectra which are composed of “short"
repeating flights. As described by Gallagher, a block approach to crack
growth prediction is much more efficient than the cycle-by-cycle approach
with approximately the same accuracy for qualifying stress histories,
Here, the crack length is calculated by a method equivalent to Equation 1

for constant amplitude histories:
N
F

sg,+ 3% Aa
S * 9 ;Ea }

(4)
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where NF is the number of flights corresponding to the crack length a,-
The incremental crack length is calculated in a manner similar to

Equation 3:
-off _eff

A
CjH1agy AR, (R4 (5)

off ‘Fi+l

where xeff is the constant-amplitude-equivalent stress intensity factor,
and 'ﬁeff is the corresponding stress ratio. A common approach is to
compute ?eff from the rms stress level (References 6, 8) of the stress

history. g—?_. equals the crack growth rate for the jth flight, In
j+
this report, an extension or combination of the above methods is considered

for more severe flight-by-flight loadings by investigating the crack
growth rate data generated by adding periodic overloads to the flight

history.
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SECTION I1I
ANALYTICAL APPROACH

As a logical progression from the approaches mentioned previously,
the following is suggested. The crack length calculation for the flight-
by-flight load history with high-to-low load interaction is composed of
two parts, the overload affected block, Aa*delay and the steady-state-
constant-amplitude-equivalent block, Aass. The crack growth for a total
block is:

Bo4 "s.::&ll‘ia."

=92 « AF"+ 92 ((AF-AF") (6)

dFeelay Fes

where a* and F* are the crack length and flights, respectively, associated
with the overload-affected crack growth as shown in Figure 1. The main
assumption of crack growth prediction for flight-by-flight load history
with randomly occurring overloads is that the delay caused by the over-
load is consistent and predictable. If it is, then the above approach
should work for complex flight-by-flight predictions. In this study, it
was important to find out if the Aa*delay was repeatable, and equal to ry.
It also had to be determined if the AasS was constant or recoverable
after the application of overloads. One method for determining if such
load histories containing overloads are acceptable for block analysis

is to compare the fatigue crack growth (FCGR) variability with that

observed for the baseline FCGR.
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CRACK GROWTH PAST OVERLOAD, o

7S

F, FLIGHTS PAST OVERLOAD
OR FLIGHTS BETWEEN OVERLOADS

Figure 1. Schematic of Crack Length versus Flights Past
Overload
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SECTION IV
TEST METHODS AND PROCEDURES

1. MATERIAL, SPECIMEN GEOMETRY, AND TEST EQUIPMENT

A total of four 24-inch wide center-cracked panels fabricated from
0.182-inch thick 7075-T6 aluminum alloy were used, however, one panel
failed early due to an electrical anomaly. The machined center notches
for the panels were approximately 1.66 inches in length. The test
equipment used included a 500-kip static, 250-kip dynamic capacity load
frame under closed-loop servo-control used to apply the variable amplitude
load history. The load levels and cycle shape were stored in a 4096 byte
memory digital programmer and then fed to the load servocontrollers.

The applied test loads were monitored through an independent data
system, and were maintained within 1% of the programmed value. The
overloads were added separately.

2. LOAD HISTORIES

Two variations of a variable amplitude load history were used:
1) a basic flight-by-flight history, and 2) the basic history with over-
loads added periodically.

a. Basic Load History

The basic variable amplitude 1oad history used in this investigation
is shown in Figure 2. This history represents a single mission derived
from the 135,000 cycle (per 1ifetime) bomber design load history
described in (References 10, 11). There are 57 separate load levels
and 123 cycles of load in the stress history given in Figure 2. The
load levels are given in percent of the largest level experienced in
the design-load history; note that the largest level in the repeating
flight is 88 percent of the largest level in the design-load history,

To avoid buckling the panels, the negative loads in the bomber mission
were clipped to a zero load level as described by Figure 2. D11 and Saff
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(Reference 12) reported that clipping compressfon loads of less than
-30% of the design 1imit stress to 0% had less than 10% effect on crack
growth life. '

b. Stress-Intensity Factor (SIF) Histories

The baseline FCG data were generated using the SIF history based on
the varjable amp)itude loads defined in Figure 2. The basic history was
based on a maximum SIF of 30 ksi/in. Fifteen of the repeating flights
were programmed as a block on the 4096 byte memory digital computer. A
single overload was applied before every 1, 3, 12, 15, or 25 blocks of
15 flights depending on the test condition. The single load cycle was
applied at a 114% load level (34.3 ksi/Tn.), which is equivalent to a
30% overload based on the highest 1oad in the repeating flight,

3. CRACK GROWTH MEASUREMENT

For all test conditions, the crack length was measured each time a
block of 15 flights had been applied. A binocular zoom microscope with
a maximum magnification of 40X was used to make the measurement in
conjunction with a Mylar scale calibrated tn 0.005 inch increments
attached to the specimen. The crack was measured.on both sides of the
notch and total crack length (2a) and flights (F) were tabulated,

4. STRESS-INTENSITY FACTOR (SIF) CONTROL PROCEDURES

The level of loading for this study was controlled so that the SIF
coefficient (K/o) was maintained at a constant level. Specifically,
the load levels were proportionately reduced as the crack length increased
according to the SIF finfte-width secant formula suggested by Fedderson
(Reference 13):

Ks c[nnc-'.-!l

(7
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where W = specimen width. The stress (o) used to describe test conditions
was the 100% stress level associated with the stress history. The
reported maximum stress-intensity factors (K'.x) values were calculated
based on the 100% level of stress. The level of SIF was controlled to
within 1% of the desired conditions by ensuring that the total crack
growth increment (A2a) did not exceed 0.050 inch prior to reducing the
load level.

By keeping the SIF level constant, fatigue crack growth rate (FCGR)
data were generated under conditions in which the normal crack growth
driving parameter is fixed. By controlling the SIF, it was possible
to accumulate the desired quantities of fatigue crack growth (FCG) data
necessary to make statistical comparisons. Also, deviation from the
baseline crack growth rate due to the applied overloads could be
detected.

t n
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SECTION V
RESULTS AND DISCUSSION

1. DETERMINATION OF BASELINE BEHAVIOR

As an earlier part of this study, the variability of the baseline
flight-by-f1ight FCGR data for constant SIF Kiax = 30 ksi/Tn. was
reported by Artley, et al. (Reference 14). No SIF gradient effect
existed for this load history as the crack advanced through a particular
panel. Therefore, the baseline steady-state FCGR behavior can be
described as a function of a SIF parameter such as suggested by Equation 5,
Such behavior was desired to investigate the effect of frequency of
overloads on flight-by-flight FCGR. The FCGR for the four panels for the
baseline, Knax = 30 ksi/Tn. condition, was found to range from
0.00464 in./block to 0.0101 in./block. The standard error of estimate,
which is a measure of the variance from the mean, ranged from 1.61x10'5
to 1.16x10'4 in./block. The FCGR for Panel 2 was approximately 36% lower
than the other three panels. This result highlights the need for the
assessment of interspecimen varfability, which may be substantially

greater than intraspecimen variabjlity.

2. EFFECT OF SINGLE OVERLOAD ON FCGR

Because the SIF coefficient (K/o) was the control condition, different
test histories could be run in any combination on a particular panel.
A single overload of 114% of the maximum desfgn stress (130% of the
maximum repeating load level) in the load history was manually added to
the baseline history. This test was performed to measure how many flights
had to be applied before the growth rate recovered to the baseline rate
and to investigate the amount of the delay.

As presented in Figure 3, the delayed region can be thought of as being
composed of three parts: Regfon (I) an initial acceleration (brittle
fracture), Regfon (I1) delay, and Region (III) accelerated recovery, or
"lost retardation." Past Regfon III, the FCGR returns to steady-state
behavior. Similar trends have been reported by Bernard (Reference 15)

12
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and Allison (Reference 16). The total overload affected area was found
to occur over 15 blocks of 15 flights each for a total of 225 flights
(Figure 3).

3. EFFECT OF PERIODIC OVERLOAD ON FCGR

Overloads of 114% of the maximum design load which were applied
every 25 blocks (375 flights) produced crack growth behavior similar
to that of the single overload case. The three regions of crack growth
occurring in the plastic yield zone are present and occur in the period
of 15 blocks following the overloads (Figure 4). After 15 blocks, the
growth rate regains a steady-state rate of 0.00450 in./block, which is
similar to the baseline rate for that panel (0.00464 in./block). The
sample mean of the combined rate is less (0.00348 - 0.00374 in,/block)
because it contains the delayed region, Region II (Table 1).

The frequency of occurrence of the overload was increased so that the
overload occurred while the crack tip was within the theoretical plastic
zone created by the previous overioad. The crack growth behavior was
seen to contain the three regions over 15 blocks. No experimental
measurements of plastic zone size were actually taken. This is apparent
when looking at the groups of 15 blocks (225 flights) shown in Figure 5.
Crack growth occurring after the overload exhibits behavior similar to
that of the single overload (initial acceleration, retardation, and
accelerated recovery). When the 114% overload is applied once every
12 blocks of flights, the region of acceleration and recovery which
normally occurs in the last three blocks of the cycle is omitted, but the
first two regions remain, as seen in Figure 6. As the periodicity of
the overloads is increased to one application every 10 blocks, only the
initfal acceleration and part of the retardation regions remains in the
cycle (Figure 7). For overloads repeated every third block, the growth
is highly variable but cyclic in pattern because it contains almost
equal portfons of Region I and Il growth (Figure 8). The overall rate
may be established and used in an equivalent stress prediction scheme if
intermediate crack growth measurements are omitted. For overloads
applied once every block, the growth rate is highly variable and as

13
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shown by the high standard errors of estimate in Table 1. The growth
rates were more random in pattern than for the other overload conditions.
So an equivalent Km‘x approach could not be used.

The growth rates for the varfous occurrences of overload are summarized
in Table 1. The FCGR for the various load cases are highly varfable.
Because of the slower rate resulting from the application of the overloads,
the FCG measurement interval is below that recommended by ASTM Standard
Method of Test (Reference 17). Less varfability would be recorded if the
crack length measurement interval was increased by approximately five
times the crack length measurement interval used here. Based on earlier
studies, the mean FCGR will remain unaffected as the crack length
measurement interval is increased (References 18, 19).

For overloads applied every three blocks the FCGR varied from 0.00119
to 0.00258 in./block at Kmax = 30 ksi/Tn., while the FCGR for overloads
applied every block ranged from 0.00156 to 0.00211 in./block. The growth
rate for cracks subjected to overloads every 12 and 15 blocks is slightly
faster because of a large initial acceleration and the inclusion of the
region of "lost retardation." The FCGR is 0.00156 and 0.00177 in./block,
respectively. Two effective stress regions can be found for overloads
recurring after the crack tip has moved through the plastic zone created
by the previous overload, 1.e. (1/25), (1) a delayed region within the
plastic zone where the FCGR is 0.0020 in./block and (2) a steady-state
region of 0.0045 in./block beyond the overload-effected plastic zone,
which is 0.0382 inches for overload of 114%.




P Sade o o - o . KBy LIE o
Py g FEEIRRE SPTr N 3 3 B

oy

AFMAL-TR-83-3069

Frequency of
Overload

Baseline

1
1/3

112
1715
1/25

_Single Overload

TABLE 1

FATIGUE CRACK GROWTH RATES FOR VARIOUS
OCCURRENCES OF OVERLOAD

Panel
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Sample Mean
in/block

.00840
.00775
.00774

.00502
.m“

.00840
.0101

.00134
.00534

.00159
.00211

.00258
.00119

.00156
.00177

.00374
.00348

.00455

]

Standard Ervor
of Estimate

-5
. 78X‘ 0-4

-16x10_¢
.39x10
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.56x10
5

.27x10°
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-72x10_¢
.61x10
5

-07x10_¢
.68x10

.95x1073
.15x10
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7.80x1078
10107
.03x10

9.90x10™°
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SECTION VI
RECOMMENDATIONS

1. Baseline FCGR data were obtained from constant K"‘x tests. The rate
remained constant as the crack length increased. The FCGR from additional
levels of constant Kmax tests should be investigated and compared to the
data from the tests conducted at the 30 ksivin. level. Additional levels
of overloads need to be applied to the flight history to verify that the
delay behavior occurs within the calculated plastic zone.

2. MWhen the occurrence of the overload was {increased, the FCGR decreased.

To determine 1f there is a limit to the decrease when a new, higher Kmax
level is established for the flight, overloads should be applied more
often to verify that the FCGR will increase to a rate corresponding to
the higher Kmax Tevel .

3. As shown by this study, each crack growth increment is dependent not
only on the current load, but also on the previous load (up to a distance
ry) preceding it. The overloads applied in this study affected crack
growth for up to 15 blocks. It is recommended that this dependency be
acknowledged through statistical modeling of the l1oad history. An
example of such dependent modeling is a Markov chain., Life predictions
carried out using a statistical modeling of the load history should be
compared 0 experimental test results.
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SECTION VII
CONCLUSIONS
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1. The block approach to 1ife prediction has potential as an analytical
i tool for components subjected to flight-by-flight load histories
] containing overloads.

2. The FCGR delay behavior was consistent for the several overioad
t conditions that were studied.

1 3. For this flight-by-flight load history, the delay region due to
§ overloads was predicted by Irwin's plastic zone which was equal to

0.0382 inches.
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